Warning This Web page has been archived on the Web.

Archived Content

Information identified as archived on the Web is for reference, research or recordkeeping purposes. It has not been altered or updated after the date of archiving. Web pages that are archived on the Web are not subject to the Government of Canada Web Standards, as per the Policy on Communications and Federal Identity.

Skip booklet index and go to page content

Recovery Strategy for the Sea Otter

1.6 Actions Already Completed or Underway

Surveys (1977 – present).  Between 1977 and 1987, survey counts were made collaboratively by Fisheries and Oceans Canada, BC Parks, and West Coast Whale Research (see Watson et al. 1997). Between 1988 and 2000, most comprehensive counts were led by Dr. Jane Watson as part of her Ph.D. work and then an on-going study of the effects of sea otters on nearshore communities, see Watson et al. (1997) for a summary of survey effort and results up to 1995. As part of a Habitat Stewardship Program project, biologists with the Nuu-cha-nulth Tribal Council (NTC) have made annual boat-based counts in parts of their claimed traditional territory since 2002.

 Development of standardized survey procedure (2001 to 2004). In 2001, Fisheries and Oceans Canada began work to standardize a survey method suitable for on-going assessment of the sea otter population and has since made aerial and boat-based counts of the population. A population survey procedure has now been developed that provides an index of population abundance and growth trends (Nichol et al. 2005). Assessment of trends in abundance and growth are dependent on a time series of survey data and therefore on-going population surveys at regular intervals are important.

Sampling collection and assessment of genetic origin, disease exposure and contaminants in sea otters (2003 - present).In 2003, 18 sea otters were live-captured on the central BC coast and in 2004, 24 sea otters on the west coast of Vancouver Island and blood and skin biopsy samples were collected. Genetic samples were collected to determine the origin of the central coast sea otters (i.e., remnant population or a result of reintroduction) and for further research on genetic structure and diversity in the population. Blood samples were collected to determine disease exposure (what diseases has the population been exposed to) and to identify pathogens of concern and emerging diseases. Additional samples are stored for further study of contaminants and health effects.

 Oil spill response (1995 - present). A symposium was held in 1995 at the Vancouver Aquarium to discuss procedures necessary in the event of a spill to effectively protect the population (Watson 1995). There are oil spill response plans in place, although they are not specific to conservation of wildlife, or sea otters in particular. The Canada - U.S. Joint Marine Pollution Contingency Plan, includes a plan for transboundary waters in southern BC (CANUSPAC) and a plan for the transboundary waters to the north in Dixon Entrance (CANUSDIX) (http://www.pacific.ccg-gcc.gc.ca/er/index_e.htm ). So far, only CANUSDIX includes a section regarding response procedures for wildlife in the event of a pollution incident.

The effect of oil spills to sea otters is well documented (e.g., Nestucca and Exxon Valdez) (Waldichuk 1989; Loughlin 1994) and the risk of an oil spill and sources of oil in BC are documented (see section 2.3). The (Canadian) Sea Otter Recovery Team formed a sea otter oil spill response Recovery Implementation Group in 2004 and has developed a sea otter oil spill response plan working document, and is working to protect the sea otter population and its habitat from oil contamination.  In 2005, the Nuu-chah-nulth Tribal Council and Vancouver Aquarium held oil spill response and wildlife response training as part of their Habitat Stewardship Program projects.

Education / Information Exchange - Nuu-cha-nulth Tribal Council and West Coast Aquatic Management Association, Habitat Stewardship Program project (2002-present). The NTC and West Coast Aquatic Management Association have developed and presented workshops to their community members to inform them of the biology and ecology of the sea otter and conflicting views about sea otters’ role in the ecosystem. In addition to annual surveys and the work on oil spill response listed above, community mapping sessions and reporting of incidental sightings is also conducted.

Sea otter viewing guidelines (2004). The West Coast Aquatic Management Association and the Bamfield Marine Sciences Centre also developed guidelines for viewing sea otters as part of their Habitat Stewardship Program project in 2004.

 JohnstoneStrait Marine Mammal Interpretative Society Museum (2002). In 2002 under their Habitat Stewardship Program project, the Johnstone Strait Marine Mammal Interpretative Society created a museum in Telegraph Cove depicting local marine mammals, including sea otters.

Documentation of subtidal excavations (geoducks and horse clams).The Underwater Harvesters Association count subtidal excavations made by sea otters while carrying out subtidal transect surveys for geoducks and horse clams.

Communication material (2002). The BC Ministry of Water, Land and Air Protection revised and re-issued a booklet on sea otters as part of their Species at Risk series.

 Habitat Protection (1981). Checleset Bay Ecological Reserve was established in 1981 by the Province of BC to protect sea otter habitat.

Re-introduction (1969-1972). Between 1969 and 1972 in a series of three translocations, the provincial, state and federal governments of BC, Canada and Alaska re-introduced 89 sea otters from Amchitka Island and Prince William Sound, Alaska, to the Bunsby Islands in Kyuquot Sound on the west coast of Vancouver Island, BC.

1.7 Knowledge Gaps

Critical habitat.Significant knowledge gaps exist with regard to understanding habitat use. It is not possible, at this time, to describe the sea otter’s critical habitat. Almost nothing is known of seasonal habitat use. Although sea otters are observed using exposed rocky coastal areas during spring and summer under good weather conditions, anecdotal observations have been made of sea otters in inlets and protected areas during winter and severe storms. These observations suggest that there may be limited seasonal movement. There is a need to document and describe the characteristics of habitats used during winter and inclement sea-state conditions.

Genetic diversity.Genetic diversity of the Canadian sea otter population is unknown, although Larson et al. (2002b) show that other sea otter populations have significantly less genetic diversity compared to their pre-fur trade ancestors. While it is likely that genetic diversity of the BC population is similar to the other translocated populations that Larson et al. (2002b) examined, the genetic diversity of the Canadian sea otter population compared to other extant populations, as well as pre-fur trade ancestors, is not known. Insight into the genetic relationship (possibility of gene flow) between BC sea otters and adjacent populations would also help understand the vulnerability of the population.

 Sources of mortality. Sources and impacts of natural predation on the sea otter population in coastal BC are not well documented. Although natural predation is thought to be relatively low (Watson et al. 1997), a greater consideration of this limiting factor may be warranted given the relatively small numbers of sea otters and the hypothesized role of killer whale predation in the decline occurring in western Alaska (see Section 1.3 Populations and Distribution).

Emerging threats.Additional threats that could be significant but are not well understood and for which the level of concern, or potential future threat, should be clarified include: disease, contaminant levels, entanglement in fishing gear, illegal kills and human disturbance. Interactions with human-related activities can be expected to increase as the sea otter population expands into areas previously unoccupied. These are threats that have been identified and found to be significant in other sea otter populations (see Section 1.5 Threats).

Interactions with other species. Although there has been considerable research examining the ecological role of sea otters and their influence on nearshore rocky habitats and upon the life history of their prey (see Section 1.4.2 Ecological Role), further research is required to determine northern abalone population parameters in the presence of sea otters to determine objectives for northern abalone recovery. An ecosystem-based approach may be warranted more broadly to evaluate population targets for other listed species in ecosystems that now include sea otters.

 Density-independent factors regulating population growth. In Southwestern Alaska, the sea otter is now listed as Threatened under the US Endangered Species Act because of a precipitous decline since the mid to late 1980s. The current leading hypothesis to explain the decline is that it has occurred as a result of increased predation by killer whales, although the reason for the shift is complex (see Section 1.4.3 Limiting Factors). Maintaining information exchange and/or collaboration with researchers and managers working on populations of sea otters in other jurisdictions will assist in understanding factors that may regulate population growth in BC.

1.8 Socio-Economic Considerations

Sea otters are a keystone species, thereby exerting a profound effect on the structure and function of the nearshore benthic communities in which they live. These consequences are ecological, but have significant social and economic ramifications through the effect on invertebrate and kelp abundance. Throughout their range, there is mounting evidence that many invertebrate fisheries can not co-exist in the presence of an established sea otter population. This conflict presents challenges and opportunities for those concerned with wildlife and ecosystem conservation, and maintaining harvestable invertebrate resources. This section provides a brief summary of the prevailing socio-economic views regarding sea otters and their recovery.

Historically, sea otters were hunted by First Nations people and used for clothing, regalia and gifts. In the 1700 and 1800s the luxuriant fur was highly prized by maritime fur traders (European and American), who hunted and bartered with First Nations for pelts that were then sold in Asia. Along the Pacific coast of North America, this trade began in 1778, following the return of Captain Cook’s ship from Vancouver Island with sea otter pelts. Trade with First Nations people specifically for sea otter pelts intensified rapidly and continued through the mid-1800s. By the mid-1800s, sea otters had been so far reduced that trade had largely shifted to focus on other fur bearing mammals. By 1911 it was recognized that the sea otter was near the brink of extinction. In that year, the species gained some protection through a clause in the International Fur Seal Treaty of 1911, but by then the global population had been reduced to one to two percent of its pre-exploitation size. Since 1911, the sea otter has been protected from commercial harvest throughout much of its range. Under the US Marine Mammal Protection Act, only aboriginal people in Alaska may harvest sea otters for subsistence purposes and for creating handicraft and traditional clothing for sale and trade (USFWS 1994; Lianna Jack pers. comm. 2002).

For many people the re-introduction of the sea otter represents a return to the pristine natural order of the marine ecosystem (Gerber and VanBlaricom 1998). This view, based on studies of the community ecology of sea otters, recognizes the ecologically important role of sea otters. Collectively, these studies demonstrate that the presence of sea otters results in increased diversity and productivity of nearshore marine ecosystems. For some, the presence of sea otters also underlines the fragility of the marine ecosystem and the need for greater protection of this environment (Watson and Root 1996), particularly from oil spills. For other people, the re-introduction of the sea otter is viewed as a threat to socially and economically valuable invertebrate resources, such as sea urchins, Dungeness crab, intertidal clams, geoducks and northern abalone. This view is of particular concern to the commercial shellfish industry, to the First Nations along the west coast of Vancouver Island, to recreational harvesters and, potentially in the future, to the shellfish aquaculture industry.

Over the last 100 years commercial and recreational invertebrate fisheries that developed following extirpation of sea otters grew as many invertebrate populations flourished in the absence of sea otter predation. As the sea otter population recovers and re-populates its historic range, declines in the size and abundance of many invertebrate species are expected. Commercial fisheries in BC for invertebrate species such as sea urchins, intertidal clams and sea cucumbers will not be possible in areas with sea otters, and other shellfish fisheries will be curtailed because of declines in abundance due to sea otter predation.

Declines in the abundance of abalone, sea urchins and pismo clams were documented in California with the expansion of sea otters in the 1970s and 1980s (Estes and VanBlaricom 1985; Wendell et al. 1986; Wendell 1994). In California, efforts to maintain sea otter free zones by live capture and release of sea otters has been ineffective and impractical (see Section 1.3.4 Populations and Distribution) (USFWS 2003). Reviews of the potential impacts of sea otters on various shellfish fisheries in BC and Southeast Alaska have been made (Pitcher 1989; Watson and Smith 1996).

Although it is evident sea otters can, and have, reduced the abundance of many invertebrate populations (Estes and Palmisano 1974; Morris et al. 1981; Breen et al. 1982; Watson 1993; Watson and Smith 1996), invertebrate stocks can and do decline in the absence of sea otters. For example, in the absence of sea otters, abalone populations in California and in BC have declined (reviewed in Watson 2000). Estes and VanBlaricom (1985) point out that, in addition to understanding how sea otters affect invertebrate abundance, it is also important to understand other factors that can strongly affect invertebrate populations.

Although the economic and social impacts of sea otters are understood, there has been little effort made to identify the social and economic benefits of sea otters [1]. Studies show that kelp beds support a greater abundance of fish and invertebrates and one study suggests kelp may contribute significantly to the productivity of offshore habitats (Harrold et al. 1998). In Washington State, it has been suggested that sea otters may benefit recreational and commercial fisheries for rockfish and lingcod by increasing kelp bed habitat (Gerber and VanBlaricom 1998). Currently, it seems evident that the marine eco-tourism industry and the herring-spawn-on-kelp fishery should benefit from the recovery of the sea otter population.

Eco-tourism is a valuable industry in BC and one that continues to grow. Sea otter viewing is included in the itinerary of eco-tour operators on the west and northeast coasts of Vancouver Island. In California, sea otters are a major tourist attraction in Monterey and Santa Cruz. Tourism generated almost 1/3 of all jobs in the area during the late 1970s (Silva 1982).

The herring-spawn-on-kelp fishery depends on a reliable supply of suitable quality kelp. Kelp abundance and quality can limit the value of this fishery (Shields et al. 1985). An increase in the abundance of giant kelp (Macrocystis integrifolia) could benefit this industry and provide increased opportunities to export kelp for this and other purposes (Watson and Smith 1996).

1.9 Preliminary Public Consultations

Two public consultation workshops were held in January 2003 (one in Port Alberni and one in Queen Charlotte City) to gather preliminary information on the potential socio-economic impacts, both positive and negative, of the draft Sea Otter Recovery Strategy on local communities. This information will be followed up and supplemented with further study during the Action Planning phase of sea otter recovery, however a brief summary is presented here of the opinions expressed during the public consultations and from written submissions received during the consultation period.

Much of the local input focused on economic concerns and First Nations concerns about their right to harvest for food, social, ceremonial purposes, although generally there was support from all sectors for the recovery of sea otters in BC.  However, some sectors also expressed concerns about the current and potential negative impacts of sea otter recovery on their invertebrate harvesting activities.

In BC, members of the commercial shellfish industry have expressed concern about declines in the abundance of economically important invertebrate resources in areas occupied by sea otters and about declines anticipated in areas not yet inhabited by sea otters. The 2005 value of shellfish fisheries in BC was $122.1 million in landed value (estimates from "The 2005 British Columbia Seafood Industry Year in Review" published by the BC Ministry of Agriculture, Food and Fisheries, September 2006). This includes red sea urchin, green sea urchin, sea cucumber, geoduck, clams, and crab. While it is difficult to accurately estimate the exact cost associated with reductions of invertebrate harvest due to sea otters, the industry estimates it will be in the range of $30 to $50 million wholesale value per year in the long term if sea otter populations expand significantly (estimated using wholesale values in the 2001 British Columbia Seafood Industry Year in Review report, Michelle James pers. comm. 2003). The shellfish industry does not believe this value can be offset by sea otter related eco-tourism dollars. They note the importance of having sea otters, but also the importance of having commercial fisheries, sport fisheries and First Nations food fisheries, and would like to find a way for both sea otters and fishermen to co-exist. The shellfish industry, in general, supports a balanced approach to protecting sea otters from becoming endangered that includes protection for valuable commercial shellfish fisheries. In addition, the industry expressed the view that sea otter populations have recovered sufficiently to no longer be considered threatened, or listed as threatened. Industry representatives are also opposed to any further translocations of sea otters.

First Nations concerns related primarily to the effects of sea otter recovery on subsistence shellfish food fisheries, commercial shellfish fisheries, and ceremonial/social uses. First Nations on the west coast of Vancouver Island are concerned with the impact sea otters are having on invertebrate food resources formerly available to their communities for health, dietary and medicinal purposes. In Kyuquot Sound / Checleset Bay on the west coast of Vancouver Island, where sea otters were first transplanted, changes (refer to Section 2.4 Ecological Role) have occurred to the intertidal and subtidal communities, and observations of the effects of sea otters are being reported from other areas. In the Queen Charlotte Islands, there were some concerns expressed by members of the Haida Nation, based upon the current situation on the west coast of Vancouver Island. Some First Nations groups have expressed concern about the impact of sea otters on the economic value of shellfish to their community, in particular, the manila and littleneck clam fisheries, and aquaculture operations, including geoduck. Some hold the view that sea otter numbers have rebounded sufficiently in some areas, and that sea otters should be managed to control their numbers in those areas. Some would also like to exercise their rights to harvest sea otters for cultural and ceremonial uses, once the numbers of otters have rebounded sufficiently to support a harvest. Despite the concerns outlined above, the opinion was also expressed that First Nations are stewards of the land and waters and would like to see sea otters recover and have the health, “balance” and ecological integrity of all the components of the ecosystem restored.

Many workshop participants identified socio-economic benefits of sea otter recovery. Tourism industry representatives identified likely increases in economic benefits to their industry with the increased opportunities for sea otter viewing that recovered populations would provide. This would include tour operators and all of the other businesses that benefit economically from increased tourist traffic to the area. Some participants identified potential economic benefits to finfish fisheries, such as rockfish, herring, and salmon, resulting from the increases in kelp habitat for spawn and for juvenile fish nurseries. Increased biodiversity might provide a basis for sustainable fisheries in the future. Environmental groups and members of the public also supported sea otter recovery as a means of restoring a natural ecological balance and recognized the pleasure that many people experience from sea otter populations returning after extirpation.



[1] See Loomis (2005) for a recent analysis of the predicted economic value of continued range expansion of southern sea otters in California